Skip to main content

Electric Arduino Go-kart






Hello everyone! As the title says, I built an electric go kart which is powered by arduino! Here's a quick video to make you certain that this is the next thing you're going to build.
http://tinypic.com/player.php?v=w8x2s9&s=8
(Sorry, the embedding isn't working for some reason)
My background: I'm a 15 year old high school student from California. My hobbies include building stuff, reading, and studying Japanese.
I've also entered into the Epilog Challenge contest, please vote for me!
A quick disclaimer: I take no responsibility for any injuries to yourself or anyone else. Electricity is DANGEROUS. Chain drives are EVEN MORE DANGEROUS. They could easily cut a finger off or worse. Wear a helmet when attempting things like this.
With that out of the way :)
Overview:
The drive setup uses a Hobbywing Xerun 150A brushless electronic speed controller to control a Savox BSM5065 450Kv motor. Batteries are 3x zippy lithium polymer - 5 cells, 5000mah. The motor has two large fans I pulled out of an old computer for cooling, mounted right over the motor. The chain drive is a 1:10 overall ratio, using a 15 tooth on the motor chained to a 30 tooth on the jackshaft, and a 9 tooth from the jackshaft to a 45 tooth on the wheel. The tires are 10" diameter so at 20 volts the top speed is around 30 mph. The ESC is controlled via PWM from the arduino. A throttle potentiometer on the steering wheel controls this. Constant current is around 40-50A, and the batteries last around 30 minutes with an average speed of 10-15mph. It requires a small push to get started (really, the motor just has to be rotating) and accelerates extremely fast. (and if anyone's wondering why it says FTL on the left control box, it's short for Faster than Light, which is the name I gave it.)
This is not going to be a guide to building this, because it's far too complex and every step wasn't documented, but rather detailed information for anyone who wants to make something similar.
I'm going to assume the reader has a decent understanding of electronics, Arduino, and radio control power systems.

Read More

Comments

Popular posts from this blog

PIC 16F877A Microcontroller Based Electronic Lock 16x2LCD 4x3 Keypad

 Circuit Diagram Security is a prime concern in our day-today life. Everyone wants to be as much secure as possible. An access control for doors forms a vital link in a security chain. The microcontroller based digital lock for Doors is an access control system that allows only authorized persons to access a restricted area. An electronic lock or digital lock is a device which has an electronic control assembly attached to it. They are provided with an access control system. This system allows the user to unlock the device with a password. The password is entered by making use of a keypad. The user can also set his password to ensure better protection. The major components include a Keypad, LCD and the controller PIC16F877A. This article describes the making of an electronic code lock using the 16F877A microcontroller. The system is fully controlled by the 8 bit microcontroller 16F877A which has a 8Kbytes of ROM for the program memory. The password is stored in the

Electronic Voting Machine Using 8051 Microcontroller (AT89C51)

  Circuit Electronic voting machine has now replaced the traditional mechanism of voting due to several advantages like security, automatic counting etc. This project presents a way to develop an electronic voting machine which displays the count of votes on a 16x2 LCD interface. A user can get his/her vote register through a set of switches (one for each candidate). After every cast of vote, the subsequent count can be seen on LCD. The circuit uses AT89C51 microcontroller and the code for the project has been written in C. This LCD based electronic voting machine is designed for four candidates. The input part consists of a set of six tactile switches. The switches and 16x2 LCD are interfaced to microcontroller AT89C51 for various operations and displays. The provision of casting votes for the candidates has been provided through four of these switches. These switches are made active high and connected to pins 2-5 (P1^1 – P1^4) of the controller. The remaining two

89C51 Based Digital Thermometer Using DS1820

Introduction The hardware configuration when using multiple 1-Wire temperature sensors like the DS1820 is very simple, as illustrated in the block diagram below. A single-wire bus is used for communication between the microcontroller and the temperature sensor. It is also possible to power the devices direclty via this 1-Wire bus. An almost unlimited number of 1-WireTM devices can be connected to the bus because each device has a unique 64-bit ROM code identifier which is used to address each sensor   Temperature measurement using DS1820 sensor. Use of ‘1-wire’ protocol... Temperature measurement is one of the most common tasks performed by the microcontroller. A DS1820 sensor is used for measurement here. It is capable of measuring temperature in the range of -55 °C to 125 °C with 0.5 °C accuracy. For the purpose of transferring data to the microcontroller, a special type of serial communication called 1-wire is used. Due to a simple and wide use of these sensors, commands us